Inclusion of body doping in compact models for fully-depleted common double gate MOSFET adapted to gate-oxide thickness asymmetry

S. Jandhyala and S. Mahapatra

Since it is difficult to find the analytical solution of the governing Poisson equation for double gate MOSFETs with the body doping term included, the majority of the compact models are developed for undoped-body devices for which the analytical solution is available. Proposed is a simple technique to include a body doping term in such surface potential based common double gate MOSFET models also by taking into account any differences between the gate oxide thickness. The proposed technique is validated against TCAD simulation and found to be accurate as long as the channel is fully depleted.

Introduction: The body of the double gate MOSFETs is generally kept undoped (or lightly doped) in order to improve the carrier mobility and to reduce the random doping fluctuation effects. However, in order to fine tune the threshold voltage, body doping sometimes becomes necessary. The compact models for common double gate (CDG) MOSFETs are generally developed for undoped body devices as it is difficult to obtain an analytical solution of the governing Poisson equation if one includes the doping term. At the same time CDG models are based on the fundamental assumption of having equal oxide thicknesses for both gates. However, for practical devices, there will always be some amount of asymmetry between the gate oxide thickness owing to process variations and uncertainties, which can affect device performance significantly. An efficient technique to include the gate oxide thickness asymmetry in CDG compact models has been reported recently [1]. In this Letter we propose a simple technique to include the body doping in the surface potential based core compact model of CDG MOSFETs by taking into account any differences between the gate oxide thickness. The proposed technique has been validated against TCAD simulation [2] for a wide range of device geometries and found to be accurate as long as the channel is fully depleted. In passing, we note that a similar effort for symmetric devices has recently been reported in the charge based modelling approach [3].

Model development: Conventions used in this Letter are as follows: \( C_{ox}(t=1) \) is the oxide capacitance per unit area of the first (second)-gate defined as \( \varepsilon_{si}/\varepsilon_{ox} \), where \( \varepsilon_{ox} \) are the permittivities, and \( t_{ox} \) and \( t_{si} \) are the thicknesses of Si and SiO\(_2\), respectively. \( q \) is the elementary charge, \( \beta \) is the inverse thermal voltage, \( n_c \) is the intrinsic carrier density, \( N_d \) is the body doping concentration, \( B = 2q\mu_c/\beta\varepsilon_{si} \), \( \varphi_B(1, 2) \) Si/\( \varepsilon_{si} \) is the surface potential at the first (second) gate, \( V \) is the electron quasi-Fermi potential (channel potential), and \( V_e \) is the effective gate voltage, i.e. \[ V_e = V_{gapp} - \beta d \theta, \]

where \( V_{gapp} \) is the voltage applied at the gate terminal and \( \beta d \) is the work function difference between the gate material and silicon. The effect of body doping is included in the model [1] through the following two steps.

Step 1: Perturbation of effective gate voltage: Neglecting the hole concentration for ‘depletion-inversion’ mode operation, the 1D Poisson equation for a long channel CDG MOSFET could be written as

\[
\frac{\partial^2 \varphi}{\partial y^2} = \frac{qn_c}{\varepsilon_{si}} e^{\varphi - V_0} + \frac{qN_d}{\varepsilon_{si}}
\]

with the boundary conditions

\[
\frac{\partial \varphi}{\partial y} \bigg|_{y=0} = -t_{ox} = -t_{ox} \left( V_e - \varphi \right)
\]

\[
\frac{\partial \varphi}{\partial y} \bigg|_{y=0} = -t_{ox} = -t_{ox} \left( V_e - \varphi \right)
\]

Here \( y \) denotes the direction perpendicular to the channel and \( y = 0 \) represents the body centre. An analytical solution of (1) is difficult to obtain. However, in the weak-inversion, neglecting the inversion charge term, one can get the following solution for the surface potentials:

\[
\psi_{B(i)} = V_e - \frac{\Delta \psi_{B(i)}}{2}
\]

where

\[
\Delta \psi_{B(i)} = \frac{qN_d t_{ox}(2C_{ox} + C_{ox}(t=1))}{C_{ox}(t=1) + C_{ox}(t=2) + C_{ox}(t=1) + C_{ox}(t=2)}
\]

For an undoped CDG MOSFET, \( \psi_B(1, 2) \) at weak inversion, is close to \( V_e \). Hence we see that the body doping lowers the value of \( \psi_B(1, 2) \) by \( \Delta \psi_{B(i)} \).

The effect of doping is now modelled as a lowering in gate overdrive, \( V_{g0} \), by a value

\[
\Delta V_e = \frac{qN_d t_{ox}(2C_{ox} + C_{ox}(t=1))}{C_{ox}(t=1) + C_{ox}(t=2) + C_{ox}(t=1) + C_{ox}(t=2)}
\]

which is the weighted average of \( \Delta \psi_{B(i)} \) with the corresponding oxide capacitances. With this transformation on gate overdrive, the input voltage equation (IV) for the doped DG MOSFET remains the same as that of the undoped DG MOSFET [4] with \( V_g \) modified to \( V_e = V_e - \Delta V_e \).

Step 2: Correction on coupling factor \( G \): For doped body CDG MOSFETs, \( G_{1(2)} \), the first integration constant (also known as coupling factor), is obtained integrating (1) once (similar to \( G \) in [4]), and could be given as

\[
G_{1(2)} = \frac{C_{ox}^2(V_e - \psi)}{\varepsilon_{si}} - \frac{\beta \theta(t'_{1(2)})}{\varepsilon_{si}} - \frac{\Delta G}{\varepsilon_{si}}
\]

where \( \varphi_B \) is the solution of the undoped DG MOSFET IVE [4] with \( V_e \) modified to \( V_e \). In effect, while calculating DC current and terminal charges [1], \( V_e \) is replaced with \( V_e + \psi \) for \( \psi_B(1, 2) \) and \( \psi_B(1, 2) \) and \( G \) is replaced with \( G_{1(2)} \). The perturbation in gate voltage \( \Delta V_e \), can be considered as a correction in gate work function that occurs due to body doping and the correction in coupling factor \( G \) is analogous to the ‘equivalent-thickness concept’ proposed in [3] (as in the exact drain current equation [1], the \( t_{ox} \) term appears as a multiplication factor of \( G \)). In this way, the body doping effect is incorporated in all operating regimes without using any fitting parameters, interpolating functions or any transcendental operators.

Results and discussions: In Figs. 1–4, the proposed model is compared with the data obtained from TCAD simulation and very good agreement is observed for drain current, transconductance and transcapacitance characteristics. A constant electron mobility of 300 cm\(^2\)/V-s and the channel width and length are considered to be 1 \( \mu \)m each for all devices.

![Fig. 1] I_{ds}–V_{ds} characteristics for doped and undoped body devices as obtained from model (lines) and TCAD simulations (symbol)

Undoped body characteristic is shown only for symmetric device. To keep clarity of figure, in log-scale data has been not been shown for all devices.
Conclusion: A simple technique to include a body doping term in surface potential based common double gate MOSFET compact models is proposed by taking into account any differences between the gate oxide thickness. The proposed technique has been validated against TCAD simulation and found to be accurate for a fully depleted channel.

Acknowledgment: The work was supported by the Department of Science and Technology, Government of India, under Grant SR/S3/ EECE/0123/2011.

© The Institution of Engineering and Technology 2012
19 April 2012
doi: 10.1049/el.2012.1295
One or more of the Figures in this Letter are available in colour online.
S. Jandhyala and S. Mahapatra (Nano Scale Device Research Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science Bangalore, Bangalore-560012, India)
E-mail: srivatsava@cedt.iisc.ernet.in

References